If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-55t+25=0
a = 16; b = -55; c = +25;
Δ = b2-4ac
Δ = -552-4·16·25
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{57}}{2*16}=\frac{55-5\sqrt{57}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{57}}{2*16}=\frac{55+5\sqrt{57}}{32} $
| (n/3)+4=13 | | 3(x+3)=4(2x-4)-4 | | 5x/2+3/2=4 | | 29)26=13d | | w/8=-1 | | 2(4x-12)=8 | | (t-10)^2-16=0 | | 3v+6=-21 | | 5g+3=3g-9 | | u÷6=-24 | | (x-23)+(x+65)=180 | | 5=31/x+5 | | 3+3x-11=11x+3-8x | | |10x-3|=17 | | 5x-300=0 | | (3x-2)-10=36 | | 8x-3=-4x+6 | | 28)14=2c | | -9×+6=-x+4 | | -4+2(x-1.5)=0 | | -4+12x=26 | | 26)h/4=15 | | 12(7/6)+4y=15 | | 25)n/10=40 | | 4-3(2+5x)=43 | | 2^2-13x=0 | | -2.50y+4y=105 | | 5y+y=28 | | |4x-1|-3=14 | | 23.11=3x+3.37 | | 2x+3-6=-4 | | 2h+0.2(20-6h)=-12 |